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Abstract

Advances in neuroimaging techniques have provided us novel insights into un-
derstanding how the human mind works. Functional magnetic resonance imag-
ing (fMRI) is the most popular and widely used neuroimaging technique, and
there is growing interest in fMRI-based markers of individual differences. How-
ever, its utility is often limited due to its high cost and difficulty acquiring from
specific populations, including children and infants. Surrogate markers, or neu-
ral correlates of fMRI markers, would have important practical implications, but
we have few stand-alone predictors for the fMRI markers. Here, using machine
learning (ML) models and data augmentation, we predicted well-validated fMRI
markers of human cognition from multivariate patterns of functional near-infrared
spectroscopy (fNIRS), a portable and relatively inexpensive optical neuroimaging
technique. We recruited 50 human participants who performed two cognitive tasks
(stop signal task and probabilistic reversal learning task), while neural activation
was measured with either fNIRS or fMRI at each of the total two visits. Using
ML models and data augmentation, we could predict the well-established fMRI
markers of response inhibition or prediction error signals from 48-channel fNIRS
activation in the prefrontal cortex. These results suggest that {NIRS might offer a
surrogate marker of fMRI activation, which would broaden our understanding of
various populations, including infants.

1 Introduction

Neuroimaging technique is a crucial analytic tool to probe neural markers of individual differences
in decision-making and learning [B, 9, 20]. Due to its non-invasive nature and high spatial/temporal
resolution, functional magnetic resonance imaging (fMRI) has been extensively used to study human
populations in cognitive neuroscience and related fields. Numerous studies using advanced analyti-
cal methods have revealed how mental processes and states are represented in the brain and they map
onto neural activity [26, [3]. Consequently, there is growing interest in fMRI-based (bio)markers
in predicting individual differences and decoding mental states [e.g., 25, [0]. However, fMRI has
several practical constraints because of the MRI environment and its high cost [I8].

Functional near-infrared spectroscopy (fNIRS) has great portability and tolerance for head motion,
and has emerged as a promising alternative neuroimaging technique although fNIRS also has its
technical constraints such as limited depth of recording (i.e., limited to measuring cortical activity).

NeurIPS 2020 Workshop on BabyMind, Vancouver, Canada.



a b General

Linear

Channel1  4e 100 synthetic
datasets
— Ed A
D i > . ! Coefficient per subject
P True signal | fiiabidhifbivvme (beta)
: Noise | rmsmresemmmncenars = BE5
Variables  { time : - =
Prediction . i
: miRs  fp| D byl Models ; EX
Augmentation
(Train & Test) Channel 48 Set1 Set100
—
1
Dependent
Variables fMRI Wi '+~ it
o ———

Figure 1: (a) Pipeline for fNIRS-fMRI prediction, (b) A graphical illustration of data augmentation.

While numerous studies have simultaneously recorded fMRI and fNIRS [e.g., [9, 22] and examined
their relationships to show fNIRS as a potential predictor of fMRI markers, few examined whether
fNIRS measurement can be directly mapped onto fMRI signals when obtained separately. Hence,
it has been difficult to juxtapose the fNIRS and fMRI outputs from different studies and interpret
them together. This hinders our understanding of neurological development as infant research have
mostly used fNIRS while many adult studies have exploited fMRI.

To address the gap, we acquired fNIRS and fMRI data independently while human participants
were performing the same cognitive tasks. A neural data augmentation technique [[4] and four
machine learning (ML) models (see Methods for more details) were then applied to multivariate
fNIRS activation patterns to test if they can predict fMRI markers.

2 Methods

2.1 Dataset

Excluding 2 subjects due to attrition, 48 healthy adults participated in both fNIRS and fMRI sessions
that were 2 days apart on average. To examine both low- and high-level cognitive abilities and their
neural mechanisms, we asked participants to perform the stop signal task [I1] and the probabilistic
reversal learning task [B]. Across two visits, we showed high consistency in task performance by
examining high correlation between behavioral measures: stop signal response time for measuring
individual difference of response inhibition in the SST, r = 0:68; p < 0:001; the number of reversals
in the PRL, r = 0:40; p = 0:01.

The Stop Signal Task (SST) is to assess response inhibition, an ability to inhibit actions [T1]. The
task predominantly requires ‘Go’ actions but occasionally signals to stop the response. To under-
stand the neural correlates of successful response inhibition, we subtracted the ‘successful go’ value
from the ‘successful stop’ beta estimates. After data quality control (e.g., head motions, noisy scan-
ner issues), 34 subjects were included in the analysis.

The Probabilistic Reversal Learning Task (PRL) is a reinforcement learning task in which high-level
cognitive abilities such as value encoding and prediction error calculation are required [6]. The task
shows two stimuli associated with either probabilistic monetary reward or punishment per trial, and
a participant has to make a series of decisions to maximize total reward. We applied hierarchical
Bayesian analysis to obtain the trial-by-trial measures of prediction errors for the chosen option
using the hBayesDM package in R [[I]. Then we computed a beta value for the prediction errors
computed for all trials per subject. 32 subjects were included in the analysis after quality control.

2.2 Modalities

fNIRS is a non-invasive optical neuroimaging technique that measures hemodynamic responses in
the brain using near-infrared light. The device we used (NIRSIT; OBELAB, Seoul, Korea) is com-
posed of 24 sources and 32 detectors, which configure 48 channels covering the prefrontal cor-
tex. Three measures representing hemodynamic response variation were calculated: oxygenated



SST PRL

Model Right IFG SMA  Left IFG IPL
Linear reg. 5.125 31.391 98.099 1.622
HbO Lasso reg. 7.870 16.782 13.839 0.272
Ridge reg. 47747  21.245 71.106  0.530
SVR (RBF) 7.108  19.035 16.723  0.202
Linear reg. 20.812  31.887 44.019 0.850
HbR Lasso reg. 4.787  7.194 8.158 0.265
Ridge reg. 18.626  28.676 38.007  0.490
SVR (RBF) 7.515 10.710 12.522  0.277
Linear reg. 26.669  49.740 31.752 0.379
HbT Lasso reg. 7.295 15.826 16.270  0.220
Ridge reg. 20.488 41.420 27.691 0.186
SVR (RBF) 8.129 15.718 14708  0.115

Table 1: Comparison of the mean squared error (MSE) across 4 models with different fNIRS signals.
IFG = inferior frontal gyrus. SMA = supplementary motor area. IPL = inferior parietal lobule.

hemoglobin (HbO), deoxygenated hemoglobin (HbR), and total hemoglobin (HbT). All of them
were used for data augmentation.

fMRI has been the most prominent non-invasive neuroimaging technology that records a blood oxy-
gen level dependent (BOLD) signal, intensity of which is determined by the concentration of HbO.
We measured the whole-brain activation using a 3T scanner (Magnetom Trio; Siemens, Germany)
and included the mean activation of each significantly-activated cluster in the prediction analysis.

For both modalities, we applied the most common neuroimaging analysis method, general linear
modeling, to estimate the beta coefficients of event regressors from time-series neural data and con-
voluted response functions. Then we constructed two main contrasts to analyze. The resultant beta
values from fNIRS and fMRI data were used as independent and dependent variables, respectively.

2.3 Data Augmentation

Data augmentation is a technique to generate synthetic data by modifying the actual data (e.g., rota-
tion, crop, noise). In this study, we applied data augmentation to our fNIRS data by adding Gaussian
noise. Each subject’s fNIRS data is a (T,,; 48) matrix where T,, indicates the total number of time
points of the n-th subject and 48 represents the number of channels. We normalized the data by
channel and created the 100 same-sized matrices containing Gaussian noise with the mean of 0 and
standard deviation of 0.01. By adding each of the noise matrices to the original matrix, we generated
100 artificial dataset per subject (Figure Ob).

2.4 Prediction

In the prediction, we used 4 traditional ML models: linear regression, Lasso regression [24], ridge
regression [B], and support vector regression (SVR) [J] with radial basis function kernel. Note
that traditional ML and deep learning models often show similar performance when applied to neu-
roimaging data [21]. We trained our models on the synthetic fNIRS beta dataset and fit each esti-
mated model to true fNIRS beta values. To predict the true fMRI beta values, we used the leave-one-
out cross-validation procedure and evaluated model performance by measuring the r-squared (R?)
values, correlation coefficients, their corresponding p-values, and the mean squared error (MSE).

3 Results

SST In the fMRI data analysis, 8 clustered regions showed significant activation during successful
response inhibition. The Lasso regression model with the HbR signals resulted in the best prediction
of 3 out of the 8 clusters (Table M). Each of the significantly predicted clusters is located in a distinct
region in the brain as shown in Figure Da. The three clusters include the right and left inferior frontal
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